1+2+3...+n+(n-1)+...+3+2+1 =(1+2+3+...+n)+[n+(n-1)+...+1]-n =2*(n(1+n)/2)-n =n^2
1+2+3...+n+(n-1)+...+3+2+1的表达式
1个回答
相关问题
-
n阶行列式计算|1 2 3.n-1 n||2 1 3.n-1 n||2 3 1.n-1 n||.||2 3 4. 1 n
-
高二数列问题Sn=1/2+3/4+5/8+…+(2n-3)/2^(n-1)+(2n-1)/2^n求Sn的表达式~请给位尽
-
1(n-1)+2(n-2)+3(n-3)+...+(n-1)2+n1=?
-
1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3
-
1+3+5+.+(2n-5)+(2n-3)+(2n-1)+(2n+1)+(2n+3)
-
3*(1+2+3+4+.n)-n =3*(1+n)*n/2-n =(3n^2+n)/2
-
(n+1)(n+2)/1 +(n+2)(n+3)/1 +(n+3)(n+4)/1
-
1、1*n+2(n-1)+3(n-2)+……+(n-2)*3+(n-1)*2+n*1的和,如何求得1/6n(n+1)(n
-
求证(n+1)(n+2)(n+3)……(n+n)=2^n*1*3*……*(2n-1)
-
1\n(n+1)+1\(n+1)(n+2)+1\(n+2)(n+3)+1\(n+3)(n+4)