1、三角形ABC中,已知a^2=b^2+c^2+根号3bc.若a=根号3,S为三角形ABC面积,求S+3cosBcosC

1个回答

  • 1.a^2=b^2+c^2+√3bc,

    cosA=-√3/2,

    A=150°,sinA=1/2,

    a=√3,外接圆半径R=a/(2sinA)=√3,

    S+3cosBcosC

    =(1/2)bcsinA+3cosBcosC

    =sinBsinC+3cosBcosC

    =cos(B-C)+2cosBcosC

    =cos(B+C)+2cos(B-C)

    =-cosA+2cos(B-C)

    =√3/2+2cos(B-C),

    它的最大值=√3/2+2.

    2.a1=25,a11^2=a1a13.

    ∴(25+10d)^=25(25+12d),

    500d+100d^=300d,d≠0,

    ∴d=-2,

    ∴an=25+(n-1)(-2)=27-2n.

    a=27-2(3n-2)=31-6n,

    S=a1+a4+a7+...+a=n(25+31-6n)/2=n(28-3n).

    3.4Sn=a^2-4n-1,n属于N*,①

    令n=1得4a1=a2^-4-1,

    ∴a2^=4a1+5,a2>0,

    ∴a2=√(4a1+5).

    令n=2,得4[a1+√(4a1+5)]=a3^-9,

    a3^=4a1+4√(4a1+5)+9=[2+√(4a1+5)]^,a3>0,

    ∴a3=2+a2,

    令n=3,得4(a1+a2+a3)=a4^-13,

    a4^=4a1+8a2+21=(a2+4)^,a4=a2+4=a3+2,

    假设a=a2+2(k-2),则

    Sk=a1+(k-1)[a2+a]/2=a1+(k-1)(a2+k-2),

    由①,4[a1+(k-1)(a2+k-2)]=a^-4k-1,

    a^=4a1+4(k-1)a2+4(k^-3k+2)+4k+1,

    =(4a1+5)+4(k-1)a2+4k^-8k+4

    =a2^+4(k-1)a2+(2k-2)^

    =(a2+2k-2)^,

    a>0,

    ∴a=a2+2k-2=a2+2(k-1),

    综上,an={a1,

    {[√(4a1+5)+2(n-2)],n>=2.