y=x²-2bx+1和y=-1/2x+m/2联立成方程组,有x²-2bx+1=-1/2x+m/2,即x²-(2b-1/2)x+1-m/2=0
于是可得:无论b 为何实数,此方程一定有解.
有△=(2b-1/2)^2-4(1-m/2)≥0,由于b可取一切实数不等式都成立,因此1-m/2≤0即可,得出m≥2
y=x²-2bx+1和y=-1/2x+m/2联立成方程组,有x²-2bx+1=-1/2x+m/2,即x²-(2b-1/2)x+1-m/2=0
于是可得:无论b 为何实数,此方程一定有解.
有△=(2b-1/2)^2-4(1-m/2)≥0,由于b可取一切实数不等式都成立,因此1-m/2≤0即可,得出m≥2