sin^4x+cos^4x
=(sin^2x + cos^2x)^2 - 2*sin^2x*cos^2x
=1 - 2*sin^2x*cos^2x
为避免混淆,还是把乘方写在外面吧
= 1 - 2*(sinx)^2*(cosx)^2
= 1 - 2*(sinx*cosx)^2
= 1 - (sin2x)^2/2
而另一方面
cos(pai/4-x)cos(pai/4+x)= 1/4 =
[cos(pai/4)*cosx + sin(pai/4)sinx)][cos(pai/4)cosx - sin(pai/4)sinx]
=[cos(pai/4)cosx]^2 - [sin(pai/4)sinx]^2
=[(cosx)^2 - (sinx)^2]/2
=cos2x/2
所以 cos2x = 1/2
sin2x = ±√[1-(cos2x)^2 = ±√3/2
(sin2x)^2 = 3/4
因此
(sinx)^4 + (cosx)^4
= 1 - (sin2x)^2/2
= 1 - (3/4)/2
= 1 -3/8
= 5/8