求值cos(pai/4-x)cos(pai/4+x)=1/4 求sin^4x+cos^4x

2个回答

  • sin^4x+cos^4x

    =(sin^2x + cos^2x)^2 - 2*sin^2x*cos^2x

    =1 - 2*sin^2x*cos^2x

    为避免混淆,还是把乘方写在外面吧

    = 1 - 2*(sinx)^2*(cosx)^2

    = 1 - 2*(sinx*cosx)^2

    = 1 - (sin2x)^2/2

    而另一方面

    cos(pai/4-x)cos(pai/4+x)= 1/4 =

    [cos(pai/4)*cosx + sin(pai/4)sinx)][cos(pai/4)cosx - sin(pai/4)sinx]

    =[cos(pai/4)cosx]^2 - [sin(pai/4)sinx]^2

    =[(cosx)^2 - (sinx)^2]/2

    =cos2x/2

    所以 cos2x = 1/2

    sin2x = ±√[1-(cos2x)^2 = ±√3/2

    (sin2x)^2 = 3/4

    因此

    (sinx)^4 + (cosx)^4

    = 1 - (sin2x)^2/2

    = 1 - (3/4)/2

    = 1 -3/8

    = 5/8