已知复数z 1 满足:|z 1 |=1+3i-z 1 .复数z 2 满足:z 2 •(1-i)+(3-2i)=4+i.

1个回答

  • (1)设z 1=x+yi(x,y∈R),

    由|z 1|=1+3i-z 1,得

    x 2 + y 2 =1+3i-(x+yi) =1-x+(3-y)i,

    1-x=

    x 2 + y 2

    3-y=0 ,解得

    x=-4

    y=3 .

    ∴z 1=-4+3i.

    而z 2•(1-i)=1+3i,

    ∴ z 2 =

    1+3i

    1-i =

    (1+3i)(1+i)

    (1-i)(1+i) =

    -2+4i

    2 =-1+2i,

    (2)由(1)知,

    OA =(-4,3) ,

    OB =(-1,2) ,∴ |

    OA| =

    (-4 ) 2 + 3 2 =5 , |

    OB |=

    (-1 ) 2 + 2 2 =

    5 .

    OA •

    OB =|

    OA | |

    OB |cos∠AOB ,得(-4)×(-1)+3×2= 5

    5 cos∠AOB ,

    解得 cos∠AOB=

    2

    5 ,∴ sin∠AOB=

    1

    5 .

    ∴△OAB的面积 S=

    1

    2 ×5×

    5 ×

    1

    5 =

    5

    2 .