(1)设z 1=x+yi(x,y∈R),
由|z 1|=1+3i-z 1,得
x 2 + y 2 =1+3i-(x+yi) =1-x+(3-y)i,
∴
1-x=
x 2 + y 2
3-y=0 ,解得
x=-4
y=3 .
∴z 1=-4+3i.
而z 2•(1-i)=1+3i,
∴ z 2 =
1+3i
1-i =
(1+3i)(1+i)
(1-i)(1+i) =
-2+4i
2 =-1+2i,
(2)由(1)知,
OA =(-4,3) ,
OB =(-1,2) ,∴ |
OA| =
(-4 ) 2 + 3 2 =5 , |
OB |=
(-1 ) 2 + 2 2 =
5 .
由
OA •
OB =|
OA | |
OB |cos∠AOB ,得(-4)×(-1)+3×2= 5
5 cos∠AOB ,
解得 cos∠AOB=
2
5 ,∴ sin∠AOB=
1
5 .
∴△OAB的面积 S=
1
2 ×5×
5 ×
1
5 =
5
2 .