因为题目中写了,a2k-1,a2k,a2k+1成等差数列啊,等差数列的中项的两倍等于两邻项之和
数列证明.由a2k-1,a2k,a2k+1成等差数列,及a2k,a2k+1,a2k+2成等比数列,得2a2k=a2k-1
1个回答
相关问题
-
已知数列{an},a1=1,a2k=a(2k-1)+(-1)^k,a(2k+1)=a2k+3k,k=1,2,3,...(
-
在数列{an}中,a1=0,且对任意k∈N+,a2k-1,a2k,a2k+1成等差数列,其公差为2k.
-
在数列{an}中,a1=0,且对任意k∈N+,a2k-1,a2k,a2k+1成等差数列,其公差为2k.
-
在数列{an}中,a1=1,且对任意K∈N*,a(2k-1),a(2k),a(2k+1)成等比数列,其公比 根号下[(k
-
递推数列问题,求通项a(2k+2)=a(2k)-1/(2k+1)*a(k)a(2k+1)=a(2k+2)其中k>=1有此
-
记A(k)=x^(2k)-y^(2k),A(k+1)=x^(2k+2)-y^(2k+2)试用A(k)表示A(k+1) 帮
-
{an}为等差数列 求证(1)ak a(2k) a(3k) 构成等差数列 (2)a1+an=a(1+k)=a(n-k)(
-
(2014•上海二模)在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为
-
设a1,a2线形无关,a1-b,a2-b线形相关,证明:存在k1,k2,使得b=k1a1 k2a
-
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n](a[n+1]))^1/2 已知a1=0 k属于N 求