∵函数y=f(x)的反函数为x=φ(y)
则在反函数可导的条件下,我们有
φ'(y)=1/f'(x) ······(*)
假定(*)是可导的,
把等号右边视作分式,等式两端再对y求导
φ"(y)={-1/[f'(x)]²}·[f'(x)]'(y)
(最后的括弧y表示对y求导)
式中第二个因子中f'(x)是x的函数,却要对y求导,应该把x看做中间变量,用复合函数求导法则先对x求导,再乘上x对y的导数φ'(y).所以
φ"(y)=-1/[f'(x)]²·[f'(x)]'(x)·φ'(y)
=-f"(x)/[f'(x)]²·φ'(y)
把(*)式代入上式即得到:
φ"(y)=-f"(x)/[f'(x)]³
填-f"(x)/[f'(x)]³