一道关于光栅衍射的物理题,

2个回答

  • 根据光栅方程d(sinθ+sinφ)=kλ,其中θ是入射角,φ是衍射角,d是光栅常数=1mm/500=2μm

    当垂直入射的时候θ=0,最大衍射级出现在衍射角φ=90处,此时sinφ最大=1(注意1A=0.1nm=0.1*10^-3μm)

    所以,所以k=d/λ=2μm/4000A=2μm/0.4μm=5

    所以最大衍射级为5,所以能看到0级,1,2,3,4,5级,-1,-2,-3,-4,-5级共11条条纹.

    当入射角为30的时候

    d(sinθ+sinφ)=kλ中θ=30(条纹干涉级次不在关于中心对称),φ取90和-90

    这样公式变为d(1/2+1)=kλ

    此时k=3d/2λ=3*2μm/2*0.4μm=7.5,所以在正衍射级次上,有7,6,5,4,3,2,1,0

    取φ=-90的时候

    k=-d/2λ=-2μm/2*0.4=-2.5,所以在负衍射级次上,有-2,-1两条

    共有10条衍射条纹.