解题思路:利用△ABC是等边三角形,D为边AC的中点,求得∠ADB=90,再用(HL)证明△ABD≌△ACE,从而得出对应边相等,即可解题.
△ADE是等边三角形,
证明:∵△ABC是等边三角形,D为边AC的中点,
∴BD⊥AC,即∠ADB=90°,
由AE⊥EC知∠AEC=90°,
∵在Rt△ABD和Rt△ACE中
BD=EC
AB=AC,
∴Rt△ABD≌Rt△ACE(HL),
∴AD=AE,
因D为边AC的中点,由AE⊥EC知∠AEC=90°,
∴AD=DE,
∴AD=AE=DE,即△ADE是等边三角形,
点评:
本题考点: 等腰三角形的判定与性质.
考点点评: 此题主要考查学生对等腰三角形的判定与性质的理解和掌握,解答此题的关键是先证明△ABD≌△ACE,然后再利用三边相等证明此三角形是等边三角形.