1)
∠ABC =∠BCD = 108
∠BAC =∠BCA =∠CBD =∠BDC =(180-108)/ 2 = 36
∠APB =∠DBC +∠ACB = 36 +36 = 72
2)
(A)证明:∵六边形ABCDEF是正六边形
∴每个内角都为120°.
∵∠FMH = 120°,A,M,B在一条直线上,
∴∠AFM +∠FMA =∠FMA +∠BMH = 60°,
∴∠AFM =∠BMH.
(B)解决方案:猜想?:FM = MH.
证明:
①当的重合点M和点A,∠FMB = 120°,BQ H和B点的MB的交叉点重合FM = MH.
②时,点M与点A,
连接FB是不重合的,并扩展至G,使BG = BH,连接MG
∵∠BAF = 120°,AF = AB
∴∠AFB =∠FBA = 30°.
BH = BG∠MBH =∠MBG MB = MB
∴△MBH≌△MBG,
∴∠MHB =∠MGB,MH = MG,
∵∠AFM =∠ BMH,∠HMB +∠MHB = 30°,
∴∠AFM +∠MGB = 30°,
∵∠AFM +∠MFB = 30°,
∴∠MFB =∠MGB.
∴FM = MG = MH.