解题思路:(I)把两式a13+a23+…+an3=Sn2,
a
3
1
+
a
3
2
+…+
a
3
n
+
a
3
n+1
=
S
2
n+1
,相减即可得到
S
2
n+1
−
S
2
n
=
a
3
n+1
,即
a
n+1
(
S
n+1
+
S
n
)=
a
3
n+1
,又an+1>0,可得
2
S
n
+
a
n+1
=
a
2
n+1
;
(II)当n≥2时,由an+12-an+1=2Sn及
a
2
n
−
a
n
=2
S
n−1
可得(an+1-an)(an+1+an)=an+1+an,进而得到an+1-an=1,(*)
当n=1,2时也满足(*).数列{an}是以1为首项,1为公差的等差数列.
(III)由bn=2n•an═n•2n,可得Tn=1×2+2×22+3×23+…+n×2n,利用“错位相减法”及其等比数列的前n项和公式即可得出.
(I)∵a13+a23+…+an3=Sn2,
a31+
a32+…+
a3n+
a3n+1=
S2n+1,
∴
S2n+1−
S2n=
a3n+1,
∴(Sn+1-Sn)(Sn+1+Sn)=
a3n+1,
即an+1(Sn+1+Sn)=
a3n+1,又an+1>0,
∴Sn+1+Sn=
a2n+1,∴2Sn+an+1=
a2n+1,
∴an+12-an+1=2Sn;
(II)当n≥2时,
由an+12-an+1=2Sn及
a2n−an=2Sn−1可得(an+1-an)(an+1+an)=an+1+an,
∵an+1+an>0,∴an+1-an=1,(*)
当n=1时,
a31=
S21=
a21,a1>0,可得a1=1,
当n=2时,
a31+
a32=
S22,得到1+
a32=(1+a2)2,及a2>0,解得a2=2.
a2-a1=1也满足(*).
∴数列{an}是以1为首项,1为公差的等差数列,其通项公式an=1+(n-1)×1=n.
(III)∵bn=2n•an═n•2n,∴Tn=1×2+2×22+3×23+…+n×2n,
2Tn=1×22+2×23+…+(n-1)×2n+n•2n+1,
∴-Tn=2+22+23+…+2n-n•2n+1
=
2×(2n−1)
2−1−n•2n+1=2n+1-2-n•2n+1=(1-n)•2n+1-2,
∴Tn=(n−1)•2n+1+2.
点评:
本题考点: 数列的求和;数列递推式.
考点点评: 熟练掌握等差数列及等比数列的通项公式、前n项和公式、“错位相减法”及其an=Sn-Sn-1(n≥2)是解题的关键.