已知数列{an}满足对一切n∈N*有an>0,且a13+a23+…+an3=Sn2,其中Sn=a1+a2+…+an.

1个回答

  • 解题思路:(I)把两式a13+a23+…+an3=Sn2

    a

    3

    1

    +

    a

    3

    2

    +…+

    a

    3

    n

    +

    a

    3

    n+1

    S

    2

    n+1

    ,相减即可得到

    S

    2

    n+1

    S

    2

    n

    a

    3

    n+1

    ,即

    a

    n+1

    (

    S

    n+1

    +

    S

    n

    )=

    a

    3

    n+1

    ,又an+1>0,可得

    2

    S

    n

    +

    a

    n+1

    a

    2

    n+1

    (II)当n≥2时,由an+12-an+1=2Sn

    a

    2

    n

    a

    n

    =2

    S

    n−1

    可得(an+1-an)(an+1+an)=an+1+an,进而得到an+1-an=1,(*)

    当n=1,2时也满足(*).数列{an}是以1为首项,1为公差的等差数列.

    (III)由bn=2n•an═n•2n,可得Tn=1×2+2×22+3×23+…+n×2n,利用“错位相减法”及其等比数列的前n项和公式即可得出.

    (I)∵a13+a23+…+an3=Sn2

    a31+

    a32+…+

    a3n+

    a3n+1=

    S2n+1,

    S2n+1−

    S2n=

    a3n+1,

    ∴(Sn+1-Sn)(Sn+1+Sn)=

    a3n+1,

    即an+1(Sn+1+Sn)=

    a3n+1,又an+1>0,

    ∴Sn+1+Sn=

    a2n+1,∴2Sn+an+1=

    a2n+1,

    ∴an+12-an+1=2Sn

    (II)当n≥2时,

    由an+12-an+1=2Sn

    a2n−an=2Sn−1可得(an+1-an)(an+1+an)=an+1+an

    ∵an+1+an>0,∴an+1-an=1,(*)

    当n=1时,

    a31=

    S21=

    a21,a1>0,可得a1=1,

    当n=2时,

    a31+

    a32=

    S22,得到1+

    a32=(1+a2)2,及a2>0,解得a2=2.

    a2-a1=1也满足(*).

    ∴数列{an}是以1为首项,1为公差的等差数列,其通项公式an=1+(n-1)×1=n.

    (III)∵bn=2n•an═n•2n,∴Tn=1×2+2×22+3×23+…+n×2n

    2Tn=1×22+2×23+…+(n-1)×2n+n•2n+1

    ∴-Tn=2+22+23+…+2n-n•2n+1

    =

    2×(2n−1)

    2−1−n•2n+1=2n+1-2-n•2n+1=(1-n)•2n+1-2,

    ∴Tn=(n−1)•2n+1+2.

    点评:

    本题考点: 数列的求和;数列递推式.

    考点点评: 熟练掌握等差数列及等比数列的通项公式、前n项和公式、“错位相减法”及其an=Sn-Sn-1(n≥2)是解题的关键.