题目很简单,2^n=偶数,2^n+1=奇数,而2^2+1=5,5与所有奇数的积的个位数一定是5.
2^1=2,2^2=4,2^3=8,2^4=16,2^5=32,设A=(2+1)(2^2+1)(2^4+1).(2^16
1个回答
相关问题
-
(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)
-
(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
-
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32
-
{2+1/2} {2^2+1/2^2} {2^4+1/2^4}{2^8+1/2^8}{2^16+1/2^16}
-
(2+1)(2²+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)+1=
-
(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1),
-
计算:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)/(2^32)-1=?
-
求值:(2+1)*(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)-2^32
-
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)=?
-
(2+1)(2²+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)的解