Sn=2n-An
Sn+1=2(n+1)-A(n+1)
相减得
Sn+1-Sn=2+An-A(n+1)
2A(n+1)=An+2
2A(n+1)-4=An-2
2(A(n+1) -2)=An-2
设Bn=An-2
所以Bn是等比数列,公比为1/2
B1=A1-2=-1
Bn=B1*(1/2)^(n-1)
Bn=-(1/2)^(n-1)
An=Bn+2=2-(1/2)^(n-1)
Sn=2n-An
Sn+1=2(n+1)-A(n+1)
相减得
Sn+1-Sn=2+An-A(n+1)
2A(n+1)=An+2
2A(n+1)-4=An-2
2(A(n+1) -2)=An-2
设Bn=An-2
所以Bn是等比数列,公比为1/2
B1=A1-2=-1
Bn=B1*(1/2)^(n-1)
Bn=-(1/2)^(n-1)
An=Bn+2=2-(1/2)^(n-1)