(1)60;(3分)
(2)如图(2),
∵△ABC与△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACD+∠DCB=∠DCB+∠BCE
∴∠ACD=∠BCE(5分)
∴△ACD≌△BCE(SAS)
∴AD=BE,
∴
AD
BE =1(7分)
(3)如图(3),
①当点D在线段AM上(不与点A重合)时,由(2)可知△ACD≌△BCE,则∠CBE=∠CAD=30°,作CH⊥BE于点H,则PQ=2HQ,连接CQ,则CQ=5.在Rt△CBH中,∠CBH=30°,BC=AB=8,则CH=BC•sin30°=8×
1
2 =4.
在Rt△CHQ中,由勾股定理得:HQ=
CQ 2 - CH 2 =
5 2 - 4 2 =3 ,则PQ=2HQ=6.(9分)
②如图5,当点D在线段AM的延长线上时,
∵△ABC与△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACB+∠DCB=∠DCB+∠DCE
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴∠CBE=∠CAD=30°,同理可得:PQ=6(11分)
③如图4,当点D在线段MA的延长线上时,∵△ABC与△DEC都是等边三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACD+∠DCE=∠BCE+∠ACB=180°
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴∠CBE=∠CAD
∵∠CAM=30°
∴∠CBE=∠CAD=150°
∴∠CBQ=30°
同理可得:PQ=6
综上,PQ的长是6.(13分)