sin(α-2π)是不是等于-sinα
1个回答
sinα
正弦函数以2π为周期,
所以是sinα
相关问题
若sin(-α)=-m,则sin(3π+α)+12sin(2π−α)等于( )
已知sin(2π-α)=[4/5],α∈(3π2,2π),则[sinα+cosα/sinα-cosα]等于( )
sin(π/2+α)·cos(π/2-α)/cos(π+α)+sin(π-α)·cos(π/2+α)/sin(π+α)=
化简sin(2π−α)cos(π+α)cos(π−α)sin(3π−α)sin(−α−π)=−1sinα−1sinα.
..sin^2(π+α)*cos(π+α)*cos(-α-2π)/tan(π+α)*sin^3(π/2+α)*sin(-
f(α)=sin(π-α)*cos(2π-α)/sin(3π/2-α)tanα,则f(-10π/3)等于
tan(3π-α)/sin(π-α)sin(3/2π-α)+sin(2π-α)cos(α-7/2π)/sin(3/2π+
1.证明 cos(α-π/2)=sinα sin(α-π/2)=﹣sinα
tanα=m,则sin(α+3π)+cos(π+α)/sin(-α)-cos(π+α)等于?
已知tanα=2,sinα+cosα<0,求[sin(2π-α)*sin(π+α)*cos(-π+α)]/[sin(3π