证明:
∵∠ACB=90°,CD⊥AB
∴∠ACD+∠BCD=∠BCD+∠B=90°
∵∠ACD=∠B
∵DE是Rt△BCD斜边的中线
∴ED=EB
∴∠B=∠BDE
∴∠ADF=∠BDE=∠B=∠ACD
∵∠F =∠F
∴△FAD ∽△FDC
∴DF/CF=AD/CD
易证△ACD∽△ABC
∴AD/CDAC/BC
∴AC/BC=DF/CF
证明:
∵∠ACB=90°,CD⊥AB
∴∠ACD+∠BCD=∠BCD+∠B=90°
∵∠ACD=∠B
∵DE是Rt△BCD斜边的中线
∴ED=EB
∴∠B=∠BDE
∴∠ADF=∠BDE=∠B=∠ACD
∵∠F =∠F
∴△FAD ∽△FDC
∴DF/CF=AD/CD
易证△ACD∽△ABC
∴AD/CDAC/BC
∴AC/BC=DF/CF