设△PQF1周长为L,内切圆半径为r,面积为S
a=√3,焦点坐标F1(-√2,0),F2(√2,0)
则L=4a=4√3
S=(1/2)rL,得r=(√3/6)S
设PQ所在直线方程为x=my-√2
联立得(m²+3)y²-(2√2)my-1=0
S=S△PF1F2+S△QF1F2=(1/2)|y1||F1F2|+(1/2)|y2||F1F2|
=|y1-y2|√2
S²=2(y1+y2)²-8y1y2=[16m²/(m²+3)²]+[8/(m²+3)]=24(m²+1)/(m²+3)²
,(m²+1)/(m²+3)²=[1/(m²+3)]-2/(m²+3)²
令t=1/(m²+3),则t∈(0,1/3]
S²=24(t-2t²),开口向下,对称轴t=1/4∈(0,1/3],所以当t=1/4是S²有最大值3
于是S有最大值√3
r=(√3/6)S≤1/2