(a^a*b^b)/(a^b*b^a)
=(a/b)^(a-b)
若a=b,则(a/b)^(a-b)=1,则a^a*b^b=a^b*b^a
若a>b,则a/b>1,a-b>0,则(a/b)^(a-b)>1,则a^a*b^b>a^b*b^a
若a1,则a^a*b^b>a^b*b^a
综上,若a=b,则a^a*b^b=a^b*b^a,否则a^a*b^b>a^b*b^a
即a^a*b^b≥a^b*b^a
(a^a*b^b)/(a^b*b^a)
=(a/b)^(a-b)
若a=b,则(a/b)^(a-b)=1,则a^a*b^b=a^b*b^a
若a>b,则a/b>1,a-b>0,则(a/b)^(a-b)>1,则a^a*b^b>a^b*b^a
若a1,则a^a*b^b>a^b*b^a
综上,若a=b,则a^a*b^b=a^b*b^a,否则a^a*b^b>a^b*b^a
即a^a*b^b≥a^b*b^a