等差数列的计算,等差数列{an}中

1个回答

  • 1.S2= a1+a2 = a1+a1+d = 2a1+d = 6+d

    b2= b1q =q

    b2+S2= q+6+d=12

    q+d=6.(1)

    q=S2/b2=(6+d)/q

    q^2 = 6+d .(2)

    由(1),(2)式解得:d=10或d=3

    ∵等比数列{bn}各项均为正数

    ∴q=3 ,d=3

    an=a1+(n-1)d =3n (n∈N)

    bn=b1q^(n-1) =3^(n-1) (n∈N)

    2.∵Sn=na1 + n(n-1)d/2 = 3n(n+1)/2

    ∴1/Sn = 2/ 3n(n+1) =(2/3)[(1/n) - 1/(n+1)] (n∈N)

    3.1/S1+1/S2+...+1/Sn = (2/3)(1 - 1/2) + (2/3)(1/2 - 1/3) + .+(2/3)[(1/n) - 1/(n+1)]

    =(2/3)[1 - 1/2 + 1/2 - 1/3 +…+ 1/n - 1/(n+1)]

    =(2/3)[1 - 1/(n+1)]

    当n=1时,1/S1+1/S2+...+1/Sn 取最小值 = 1/3

    当n=2,3,.n时,[1 - 1/(n+1)]的值无限接近于1

    ∴(1/3) ≤ 1/S1+1/S2+...+1/Sn < (2/3)