解题思路:(1)要证MN是⊙O的切线,只需证明MA⊥AB即可,易得∠MAC+∠CAB=90°,即MA⊥AB;故可得证.
(2)连接AD,则∠1=∠2,进而可得∠1+∠DGF=90°,故∠FDG=∠FGD,即FD=FG.
(3)求△BCG的面积,只需证得△FGH∽△BGC,再根据相似三角形的性质,求得△BCG的面积.
(1)证明:∵AB是直径,
∴∠ACB=90°.
∴∠CAB+∠ABC=90°.(1分)
∵∠MAC=∠ABC,
∴∠MAC+∠CAB=90°.
即MA⊥AB.
∴MN是半圆的切线.(2分)
(2)证明:
证法1:∵D是弧AC的中点,
∴∠DBC=∠2.(3分)
∵AB是直径,
∴∠CBG+∠CGB=90°.
∵DE⊥AB,
∴∠FDG+∠2=90°.(4分)
∵∠DBC=∠2,
∴∠FDG=∠CGB=∠FGD.
∴FD=FG.(5分)
证法2:连接AD,则∠1=∠2,(3分)
∵AB是直径,
∴∠ADB=90°.
∴∠1+∠DGF=90°.
又∵DE⊥AB,
∴∠2+∠FDG=90°.(4分)
∴∠FDG=∠FGD.
∴FD=FG.(5分)
(3)解法1:过点F作FH⊥DG于H,(6分)
又∵DF=FG,
∴S△FGH=[1/2]S△DFG=[1/2]×4.5=[9/4].(7分)
∵AB是直径,FH⊥DG,
∴∠C=∠FHG=90°.(8分)
∵∠HGF=∠CGB,
∴△FGH∽△BGC.
∴
S△FGH
S△BGC=(
HG
CG)2=(
1.5
4)2=
9
64.(9分)
∴S△BCG=[9/4×
64
9]=16.(10分)
解法2:∵∠ADB=90°,DE⊥AB,
∴∠3=∠2.(6分)
∵∠1=∠2,
∴∠1=∠3.
∴AF=DF=FG.(7分)
∴S△ADG=9.(8分)
∵∠ADG=∠BCG,∠DGA=∠CGB.
∴△ADG∽△BCG.(9分)
∴
S△BCG
S△ADG=(
CG
DG)2=(
4
3)2=
16
9.
∴S△BCG=[16/9×9=16.(10分)
解法3:连接AD,过点F作FH⊥DG于H.
∵SFDG=
1
2]DG×FH=[1/2]×3FH=4.5,
∴FH=3.
∵H是DG的中点,FH∥AD,
∴AD=2FH=6
∴S△ADG=[1/2AD•DG=
1
2×6×3=9.
∵∠ADG=∠BCG,∠DGA=∠CGB.
∴△ADG∽△BCG.
∵DG=3,GC=4,
∴
S△ADG
S△BCG]=([DG/CG])2,
∴[9
S△BCG=(
3/4])2,
∴S△BCG=16.
点评:
本题考点: 切线的判定;圆周角定理;相似三角形的判定与性质.
考点点评: 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.