函数f(x)=x^2-4x+c与函数g(x)=x+a/x在区间(0,+∞)上的同一点处有相同的最小值,则函数h(x)=g

1个回答

  • f'(x)=2x-4 ,令导数=0 ,有X=2 取得最小值.由于g(x) 也是这一点,且 g‘(X)=1-a/x^2 =0 g'(2)=1-a/4=0 a=4 ,g(x)=x+4/x g(2)=2+2=4 f(2)=4-8+c=g(2)=4,c=8 .这样就把h(X)给确定了,h(x)=x+4/x+8 ,对于h(x) 函数研究如下:其导数是 h'(x)=1-4/x^2 .令导数为零,取得驻点 X1=2,X2=-2 ,由于2在[1,3] ,有极值 h(2)=2+2+8=12.在探讨 h(1)=1+4+8=13.h(3)=3+4/3+8=12+1/3 .所以,最大值是13.当X=1 时 取得