f'(x)=2x-4 ,令导数=0 ,有X=2 取得最小值.由于g(x) 也是这一点,且 g‘(X)=1-a/x^2 =0 g'(2)=1-a/4=0 a=4 ,g(x)=x+4/x g(2)=2+2=4 f(2)=4-8+c=g(2)=4,c=8 .这样就把h(X)给确定了,h(x)=x+4/x+8 ,对于h(x) 函数研究如下:其导数是 h'(x)=1-4/x^2 .令导数为零,取得驻点 X1=2,X2=-2 ,由于2在[1,3] ,有极值 h(2)=2+2+8=12.在探讨 h(1)=1+4+8=13.h(3)=3+4/3+8=12+1/3 .所以,最大值是13.当X=1 时 取得
函数f(x)=x^2-4x+c与函数g(x)=x+a/x在区间(0,+∞)上的同一点处有相同的最小值,则函数h(x)=g
1个回答
相关问题
-
在区间[1,4]上的函数f(x)=x^2+px+q与g(x)=x+4/x^2在同一点取到相同的最小值,则区间上函数f(x
-
函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=f(x)x在区间(1,+∞)上一定( )
-
已知函数f(x)=x^2-2ax+a在区间(-无穷,0)上有最小值,则函数g(x)=f(x)/x在区间(1,+无穷)上一
-
在区间〔1.5.3〕上,函数f(x)=x^2+bx+c与函数g(x)=x+1/(x-1)同时取到相同的最小值,则函数f(
-
在区间[-4,-1]上,函数f(x)=-x^2+px+q与函数g(x)=x+4/x同时取最大值,则函数f(x)在区间上[
-
在区间[½,2]上,函数f(x)=x²+px+q与g(x)=2x+2/x在同一点取得相同的最小值,那
-
在区间[[1/2],2]上,函数f(x)=x2+bx+c(b、c∈R)与g(x)=x2+x+1x在同一点取得相同的最小值
-
已知函数f(x)=x2-2ax+a在区间(0,+∞)上一定存在最小值,则函数g(x)=f(x)x在区间(0,+∞)上一定
-
若函数f(x)=[1/4]sin(πx)与函数g(x)=x3+bx+c的定义域为[0,2],它们在同一点有相同的最小值,
-
设函数f(x)=x4 −ax(a>0)的零点都在区间[0,5]上,则函数g(x)=1x与函数h(x)=x3