1+1/2+1/3+...+1/(2^n-1)>n/2
现在归纳证明
n=1时,1>1/2成立
现在证明n=k时成立(k>1)
由归纳知1+1/2+1/3+..+1/(2^(k-1)-1)>(k-1)/2
而n=k时
1+1/2+1/3+...+1/(2^k-1)
=(1+1/2+1/3+..+1/(2^(k-1)-1))
+ ( 1/(2^(k-1))+1/(2^(k-1)+1)+...1/(2^k-1) )
>(k-1)/2+ ( 1/(2^(k-1))+1/(2^(k-1)+1)+...1/(2^k-1) )
对 1/(2^(k-1))+1/(2^(k-1)+1)+...1/(2^k-1) 进行缩放,可知有2^(k-1)项,每项都大于1/2^k,所以
1/(2^(k-1))+1/(2^(k-1)+1)+...1/(2^k-1)>2^(k-1)/2^k=1/2
所以合起来1+1/2+1/3+...+1/(2^k-1)>(k-1)/2+1/2=k/2
得证