观察下列不等式:1>1/2,1+1/2+1/ 3>1,

2个回答

  • 1+1/2+1/3+...+1/(2^n-1)>n/2

    现在归纳证明

    n=1时,1>1/2成立

    现在证明n=k时成立(k>1)

    由归纳知1+1/2+1/3+..+1/(2^(k-1)-1)>(k-1)/2

    而n=k时

    1+1/2+1/3+...+1/(2^k-1)

    =(1+1/2+1/3+..+1/(2^(k-1)-1))

    + ( 1/(2^(k-1))+1/(2^(k-1)+1)+...1/(2^k-1) )

    >(k-1)/2+ ( 1/(2^(k-1))+1/(2^(k-1)+1)+...1/(2^k-1) )

    对 1/(2^(k-1))+1/(2^(k-1)+1)+...1/(2^k-1) 进行缩放,可知有2^(k-1)项,每项都大于1/2^k,所以

    1/(2^(k-1))+1/(2^(k-1)+1)+...1/(2^k-1)>2^(k-1)/2^k=1/2

    所以合起来1+1/2+1/3+...+1/(2^k-1)>(k-1)/2+1/2=k/2

    得证