证明:设A'A与BE交于F,可知∠A'AD=α cosα=AD/A'A A'A=m/cosα
BF= AF/tanα =A'A/2tanα = m/2tanα cosα
EF= AFtanα =A'Atanα /2 = mtanα/2cosα
EB=BF+EF= m/2tanα cosα + mtanα/2cosα
= m/cosα(1/2tanα + tanα/2)
= m/cosα(cosα/2sinα + sinα/2cosα)
= (m/cosα)*(cos²α+ sin²α)/2sinα cosα
=(m/cosα)* (1/sin2α)
= m/(cosα*sin2α)