解方程组:xy+yz+zx=a.(1)
x^4+y^4+z^4=b.(2)
xyz=c..(3)
将(1)式两边平方得:
x²y²+y²z²+z²x²+2(xy²z+x²yz+xyz²)=x²y²+y²z²+z²x²+2c(x+y+z)=a²
两边同乘以2,得2x²y²+2y²z²+2z²x²+4c(x+y+z)=2a².(4)
(2)+(4)得 (x²+y²+z²)²+4c(x+y+z)=2a²+b
即有 [(x+y+z)²-2(xy+yz+zx)]²+4c(x+y+z)-2a²-b=0
将(1)式代入得:
[(x+y+z)²-2a]²+4c(x+y+z)-2a²-b=0
(x+y+z)^4-4a(x+y+z)²+4c(x+y+z)+2a²-b=0
令x+y+z=u,代入之即得:
u^4-4au²+4cu+2a²-b=0
用此式解出u来,事情大概就好办了!
不知为什么不许用四次方程的求根公式?