f(x)=(x-1)(x-2)……(x-n)/(x+1)(x+2)……(x+n),求导f'(1)请写出具体过程

3个回答

  • 答:[(-1)^(n+1)]/[n(n+1)]

    方法一

    记f(x)=(x-1)g(x),其中g(x)=[(x-2)...(x-n)]/[(x+1)(x+2)...(x+n)],

    当n为奇数时g(1)=(n-1)!/(n+1)!=1/[n(n+1)],当n为偶数时g(1)=-(n-1)!/(n+1)!=-1/[n(n+1)],

    求导f'(x)=g(x)+(x-1)g'(x)

    则f'(1)=g(1).

    当n为奇数时f'(1)=g(1)=(n-1)!/(n+1)!=1/[n(n+1)],

    当n为偶数时f'(1)=g(1)=-(n-1)!/(n+1)!=-1/[n(n+1)].

    则f'(1)=[(-1)^(n+1)]/[n(n+1)]

    方法二

    利用导数定义

    注意到f(1)=0

    f'(1)=(x->1)lim[f(x)-f(1)]/(x-1)=(x->1)f(x)/(x-1)

    =(x->1)lim[(x-2)(x-3)...(x-n)]/[(x+1)(x+2)...(x+n)]

    =[(-1)*(-2)*...*(1-n)]/[2*3*...*(n-1)*n*(n+1)],

    当n为奇数时f'(1)=1/[n(n+1)],当n为偶数时f'(1)=-1/[n(n+1)].

    则f'(1)=[(-1)^(n+1)]/[n(n+1)]