解题思路:(1)观察一系列等式得到一般性规律,写出即可;
(2)原式右边利用平方差公式化简,计算得到结果与左边相等,即可得证.
(1)m•n=([m+n/2])2-([m−n/2])2;
(2)∵右边=([m+n/2]+[m−n/2])([m+n/2]-[m−n/2])=mn=左边,
∴m•n=([m+n/2])2-([m−n/2])2.
故答案为:(1)m•n=([m+n/2])2-([m−n/2])2
点评:
本题考点: 分式的混合运算.
考点点评: 此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.