n = 1 时
左端 = 1×2²-2×3² = -14
右端 = -1×(1+1)×(4×1+3) = -14
命题成立
设 n = k 时成立
(1×2²-2×3²)+(3×4²—4×5²)+.+[(2k-1)(2k)²-2k(2k+1)²]=-k×(k+1)×(4k+3)
n=k+1 时
左端 =
(1×2²-2×3²)+(3×4²—4×5²)+.+ [(2k-1)(2k)²-2k(2k+1)²] + [(2k+1)(2k+2)²-2(k+1)(2k+3)²]
= -k×(k+1)×(4k+3)+ [(2k+1)(2k+2)²-2(k+1)(2k+3)²]
= -k×(k+1)×(4k+3)+ 2(k+1)[2(2k+1)(k+1)-(2k+3)²]
= -k×(k+1)×(4k+3)+ 2(k+1)[4k² +6k + 2 -4k²-12k - 9]
= -k×(k+1)×(4k+3)- 2(k+1)(6k + 7)
= -(k+1)×[k×(4k+3) + 2(6k+7)]
= -(k+1)×[4k²+15k+14)
= -(k+1)×(k+2)×(4k+7)
右端 = -(k+1)×[(k+1)+1]×[4(k+1)+3]
= -(k+1)×(k+2)×(4k+7)
左端 = 右端
所以 n = k+1 时 命题成立
因此 原命题成立