第一问:可令m=x>0,n=0,因为f(m+n)=f(m)*f(n),代入有f(x)=f(0)*f(x),所以f(0)=1或f(x)=0,又因为当x>0时,0
设f(x)是定义在R上的函数,对m.n ∈R恒有f(m+n)=f(m).f(n),且当x>0时,0
2个回答
相关问题
-
设f(x)是定义在R上的函数,对m,n属于R恒有f(m+n)=f(m)*f(n),且当x>0时,0
-
设f(x)是定义在R上的函数,对任意m、n∈R恒有f(m+n)=f(m)+f(n),且当x>0时,f(x)<0,f(1)
-
设f(x)是定义在上的函数,对m,n属于R恒有fm+n)=f(m)f(n),且当x>0时,0
-
设f(x)是定义在R上的函数,对m,n属于R恒有f(m+n)=f(m)*f(n),且当x>0时,01,求x的范围
-
设函数y=f(x)定义在R上,对于任意实数m.n,恒有f(m+n)=f(m)*f(n),且当x>0时,0
-
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0
-
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)×f(n),且当x>0时,0
-
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1
-
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
-
设函数y=f(x)定义在R上,对与任意实数m;n,恒有f(m+n)=f(m)f(n).当x>0时,0<f(x)<1.