只需证明三角形ABC的中线AD的2/3分点G(AG:GD=2:1)也是中线BE(及CF)的2/3分点,
由AG:GD=2:1,即向量AG=2GD,向量(BG-BA)=2(BD-BG),3BG=2BD+BA=BC+BA=2BE,BG=2/3*BE,故B,G,E三点共线且BG:GE=2:1
同理可证,C,G,F三点共线且CG:GF=2:1
故命题得证
只需证明三角形ABC的中线AD的2/3分点G(AG:GD=2:1)也是中线BE(及CF)的2/3分点,
由AG:GD=2:1,即向量AG=2GD,向量(BG-BA)=2(BD-BG),3BG=2BD+BA=BC+BA=2BE,BG=2/3*BE,故B,G,E三点共线且BG:GE=2:1
同理可证,C,G,F三点共线且CG:GF=2:1
故命题得证