(1)在Rt△BAC中,∠BAC=90°,AB=AC=2,由勾股定理得:BC=
22+22=2
2.
(2)DE=DF,DE⊥DF,
理由是:∵D为BC边上中点,△ABC是等腰直角三角形,
∴AD=[1/2]BC=BD,∠CAD=∠ABC=45°,
即∠FAD=∠EBD=45°,
∵PE⊥AB,PF⊥AC,
∴∠PEA=∠AFP=∠BAC=∠EAF=90°,
∴四边形AEPF是矩形,
∴AF=PE,
∵PE⊥AB,
∴∠PEB=90°,
∵∠B=45°
∴在等腰直角三角形BPE中:PE=BE=AF,
在△BDE和△ADF中,
BD=AD
∠B=∠FAD
BE=AF,
∴△BDE≌△ADF(SAS),
∴DE=DF.,∠BDE=∠ADF,
∵AB=AC,D为BC中点,
∴AD⊥BC,
∴∠ADB=90°,
∴∠BDE+∠ADE=∠ADB=90°,
∴∠ADF+∠ADE=90°,
∴∠EDF=90°,
∴DE⊥DF,
(3)∵△BDE≌△ADF,
∴S△BDE=S△ADF,
∵S四边形AEDF
=S△△ADF++S△ADE
=S△BDE+S△ADE
=S△ADB
=[1/2]S△ABC
=[1/2]×[1/2]AB×AC
=[1/2]×[1/2]×2×2
=2.
(4)EF的最小值是
2,
理由是:∵AE+AF=AE+BE=AC=2,
在Rt△AEF中,由勾股定理得:AE2+AF2=EF2,
EF2=AE2+(2-AE)2=2(AE-1)2+2,
即当AE=1时,EF2的最小值是2,
即EF的最小值是
2.