由正弦定理a/sinA=b/sinB=c/sinC=2R
(a^2+b^2+c^2)(1/sin^2A+1/sin^2B+1/sin^2C)
=(a/sinA)^2+(a/sinB)^2+(a/sinC)^2+(b/sinA)^2+(b/sinB)^2+(b/sinC)^2+(c/sinA)^2+(c/sinB)^2+(c/sinC)^2
=(2R)^2+(a/sinB)^2+(a/sinC)^2+(b/sinA)^2+(2R)^2+(b/sinC)^2+(c/sinA)^2+(c/sinB)^2+(2R)^2
=12R^2+(a/sinB)^2+(a/sinC)^2+(b/sinA)^2+(b/sinC)^2+(c/sinA)^2+(c/sinB)^2
又A+B+C=∏ sinA=sin(B+C) 即sinA>sinB,sinA>sinC 所以a/sinB>2R,a/sinC>2R
同理b/sinA>2R,b/sinC>2R,c/sinA>2R,c/sinB>2R
所以:(a^2+b^2+c^2)(1/sin^2A+1/sin^2B+1/sin^2C)>=36R^2
>=36R^2