令a=b+t,t>0,b>0,则有:
a^2+16/[b(a-b)]=(b+t)^2+16/(bt)>=(2√bt)^2+16/(bt)=4bt+16/(bt)>=2√[4bt *16/(bt)]=16
当b=t,及4bt=16/(bt),即b=t=√2,即b=√2,a=2√2时取最小值16.
令a=b+t,t>0,b>0,则有:
a^2+16/[b(a-b)]=(b+t)^2+16/(bt)>=(2√bt)^2+16/(bt)=4bt+16/(bt)>=2√[4bt *16/(bt)]=16
当b=t,及4bt=16/(bt),即b=t=√2,即b=√2,a=2√2时取最小值16.