(I)∵a 3=5,S 3=9,
∴
a 3 = a 1 +2d=5
S 3 =3 a 1 +
3×2
2 d=9 ,即
a 1 +2d=5
a 1 +d=3 ,解得首项a 1=1,d=2.
∴数列{a n}的通项公式 a n =1+2(n-1)=2n-1,n∈ N • .
(II)∵a 2=3,a 5=9,
∴公比 q=
b 3
b 2 =
a 5
a 2 =
9
3 =3 , b 1 =
b 2
q =
3
3 =1 .
∴数列{b n}的前n项和T n=
1- 3 n
1-3 =
3 n -1
2 .