已知函数 f(x)= 1 2 +lo g 2 x 1-x .

1个回答

  • 证明:(Ⅰ)在函数f(x)图象上任取一点M(x,y),M关于 (

    1

    2 ,

    1

    2 ) 的对称点为N(x 1,y 1),

    x+ x 1

    2 =

    1

    2

    y+ y 1

    2 =

    1

    2 ,∴

    x=1- x 1

    y=1- y 1 ①.

    ∵f(x)=

    1

    2 +lo g 2

    x

    1-x ,即 y=

    1

    2 +lo g 2

    x

    1-x ②.

    将①代入②得, 1- y 1 =

    1

    2 +lo g 2

    1- x 1

    1-(1- x 1 ) =

    1

    2 +lo g 2

    1- x 1

    x 1 =

    1

    2 -lo g 2

    x 1

    1- x 1 ,

    ∴ y 1 =

    1

    2 +lo g 2

    x 1

    1- x 1 ,∴N(x 1,y 1)也在f(x)图象上,∴f(x)图象关于点 (

    1

    2 ,

    1

    2 ) 成中心对称.

    (直接证f(x)+f(1-x)=1得f(x)图象关于点 (

    1

    2 ,

    1

    2 ) 成中心对称,也可给分)(5分)

    (Ⅱ)由(Ⅰ)可知f(x)+f(1-x)=1,

    又∵n≥2时, S n =f(

    1

    n )+f(

    2

    n )+…+f(

    n-1

    n ) ③, S n =f(

    n-1

    n )+f(

    n-2

    n )+••+f(

    1

    n ) ④

    ③+④得2S n=n-1,∴ S n =

    n-1

    2 .(9分)

    (Ⅲ)由(Ⅱ)可知,当n≥2时, a n =

    1

    (

    n-1

    2 +1)(

    n

    2 +1) =

    4

    (n+1)(n+2) = 4(

    1

    n+1 -

    1

    n+2 ) ,

    ∴当n≥2时, T n =

    2

    3 +4(

    1

    3 -

    1

    4 +

    1

    4 -

    1

    5 +…+

    1

    n+1 -

    1

    n+2 ) =

    2

    3 +4(

    1

    3 -

    1

    n+2 )=2-

    4

    n+2 ;

    ∵当n=1时, T 1 =

    2

    3 也适合上式,∴ T n =2-

    4

    n+2 (n∈ N * ) .

    由T n<λ(S n+1+1)得, 2-

    4

    n+2 <λ(

    n

    2 +1) ,∴ λ>

    2

    n+2 (2-

    4

    n+2 ) ,即 λ>

    4

    n+2 -

    8

    (n+2) 2 .

    令 t=

    2

    n+2 ,则

    4

    n+2 -

    8

    (n+2) 2 = 2t-2 t 2 =-2(t-

    1

    2 ) 2 +

    1

    2 ,

    又∵n∈N *,∴ 0<t≤

    2

    3 ,

    ∴当 t=

    1

    2 时,即n=2时,

    4

    n+2 -

    8

    (n+2) 2 最大,它的最大值是

    1

    2 ,∴ λ∈(

    1

    2 ,+∞) .(14分)