证明:(Ⅰ)在函数f(x)图象上任取一点M(x,y),M关于 (
1
2 ,
1
2 ) 的对称点为N(x 1,y 1),
∴
x+ x 1
2 =
1
2
y+ y 1
2 =
1
2 ,∴
x=1- x 1
y=1- y 1 ①.
∵f(x)=
1
2 +lo g 2
x
1-x ,即 y=
1
2 +lo g 2
x
1-x ②.
将①代入②得, 1- y 1 =
1
2 +lo g 2
1- x 1
1-(1- x 1 ) =
1
2 +lo g 2
1- x 1
x 1 =
1
2 -lo g 2
x 1
1- x 1 ,
∴ y 1 =
1
2 +lo g 2
x 1
1- x 1 ,∴N(x 1,y 1)也在f(x)图象上,∴f(x)图象关于点 (
1
2 ,
1
2 ) 成中心对称.
(直接证f(x)+f(1-x)=1得f(x)图象关于点 (
1
2 ,
1
2 ) 成中心对称,也可给分)(5分)
(Ⅱ)由(Ⅰ)可知f(x)+f(1-x)=1,
又∵n≥2时, S n =f(
1
n )+f(
2
n )+…+f(
n-1
n ) ③, S n =f(
n-1
n )+f(
n-2
n )+••+f(
1
n ) ④
③+④得2S n=n-1,∴ S n =
n-1
2 .(9分)
(Ⅲ)由(Ⅱ)可知,当n≥2时, a n =
1
(
n-1
2 +1)(
n
2 +1) =
4
(n+1)(n+2) = 4(
1
n+1 -
1
n+2 ) ,
∴当n≥2时, T n =
2
3 +4(
1
3 -
1
4 +
1
4 -
1
5 +…+
1
n+1 -
1
n+2 ) =
2
3 +4(
1
3 -
1
n+2 )=2-
4
n+2 ;
∵当n=1时, T 1 =
2
3 也适合上式,∴ T n =2-
4
n+2 (n∈ N * ) .
由T n<λ(S n+1+1)得, 2-
4
n+2 <λ(
n
2 +1) ,∴ λ>
2
n+2 (2-
4
n+2 ) ,即 λ>
4
n+2 -
8
(n+2) 2 .
令 t=
2
n+2 ,则
4
n+2 -
8
(n+2) 2 = 2t-2 t 2 =-2(t-
1
2 ) 2 +
1
2 ,
又∵n∈N *,∴ 0<t≤
2
3 ,
∴当 t=
1
2 时,即n=2时,
4
n+2 -
8
(n+2) 2 最大,它的最大值是
1
2 ,∴ λ∈(
1
2 ,+∞) .(14分)