等比数列求和公式就是a1(q^n-1)/q-1
an=2^n+n,求SnSn=(2^1+2^2+……2^n)+(1+2+3+……+n)=2^(n+1)-2+n(n+1)
1个回答
相关问题
-
求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n/(n^2+n+n)】n
-
1 1 …1 2 2^2 …2^n 3 3^2 …3^n … n n^2 … n^n 行列式求值
-
an+1=1/2 an^2-1/2 nan +1,a1=3,an=n+2,当n》2,an^n》an^n
-
已知正项数列[an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n^2(n>1,n∈N*)求数列{an
-
求极限Xn=1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+……+n/(n^2+n)
-
求极限 1/(n^2+1^2)+2/(n^2+2^2)+3/(n^3+3^2)+...+n/(n^2+n^2)
-
an=√(1*2)+√(2*3)+√(3*4)……+√[n(n+1)],n=1.2 3 4 ……证明n(n+1)/2<a
-
an=Sn-Sn-1=(n^2+2n)-[(n-1)^2+2(n-1)]=
-
求和:1*n+2(n-1)+3(n-2)+……+(n-2)*3+(n-1)*2+n*1 答案是n*(n+1)*(n+2)
-
发现:1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/61^2+3^2+……+n^2=n(n+2)(2n