a(n) - a(n+1) = na(n+1),
a(n) = (n+1)a(n+1),
n!a(n) = (n+1)!a(n+1),
{n!a(n)}是首项为a(1)=1,的常数数列.
n!a(n) = 1,
a(n) = 1/n!
b(n) = 2^n/n!,
t(n) = b(1)+b(2)+b(3)+...+b(n-1)+b(n)
= 2/1!+ 2^2/2!+ 2^3/3!+ ...+ 2^(n-1)/(n-1)!+ 2^n/n!
这个,没法求啊.
a(n) - a(n+1) = na(n+1),
a(n) = (n+1)a(n+1),
n!a(n) = (n+1)!a(n+1),
{n!a(n)}是首项为a(1)=1,的常数数列.
n!a(n) = 1,
a(n) = 1/n!
b(n) = 2^n/n!,
t(n) = b(1)+b(2)+b(3)+...+b(n-1)+b(n)
= 2/1!+ 2^2/2!+ 2^3/3!+ ...+ 2^(n-1)/(n-1)!+ 2^n/n!
这个,没法求啊.