由 f(0)= -2,可设 f(x)=ax² +bx -2 ,
此时二次方程为:ax² + (b+3)x - 2=0,
由于实根分别为 -2,1,代入方程得:4a -2(b+3)-2 =0 ,a+(b+3)-2=0,
两式联立得:a=1 ,b=-2
(1 ) f(x)= x² -2x -2 ,
(2) 最大值为 f(-3)=13,最小值为 f(1) = -3
由 f(0)= -2,可设 f(x)=ax² +bx -2 ,
此时二次方程为:ax² + (b+3)x - 2=0,
由于实根分别为 -2,1,代入方程得:4a -2(b+3)-2 =0 ,a+(b+3)-2=0,
两式联立得:a=1 ,b=-2
(1 ) f(x)= x² -2x -2 ,
(2) 最大值为 f(-3)=13,最小值为 f(1) = -3