数列{a n }的通项 a n = n 2 (co s 2 nπ 3 -si n 2 nπ 3 ) ,其前n项和为S n

1个回答

  • (1)由于 co s 2

    3 -si n 2

    3 =cos

    2nπ

    3 , a n = n 2 •cos

    2nπ

    3

    故S 3k=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 3k-2+a 3k-1+a 3k

    = (-

    1 2 + 2 2

    2 + 3 2 )+(-

    4 2 + 5 2

    2 + 6 2 )+…+[-

    (3k-2 ) 2 +(3k-1 ) 2

    2 +(3k ) 2 ]

    =

    13

    2 +

    31

    2 +…+

    18k-5

    2 =

    k(4+9k)

    2

    S 3k-1 = S 3k - a 3k =

    k(4-9k)

    2 ,

    S 3k-2 = S 3k-1 - a 3k-1 =

    k(4-9k)

    2 +

    (3k-1) 2

    2 =

    1

    2 -k=-

    3k-2

    3 -

    1

    6 ,

    故 S n =

    -

    n

    3 -

    1

    6 n=3k-2

    (n+1)(1-3n)

    6 n=3k-1

    n(3n+4)

    6 n=3k (k∈N *

    (2) b n =

    S 3n

    n• 4 n =

    9n+4

    2• 4 n ,

    T n =

    1

    2 [

    13

    4 +

    22

    4 2 ++

    9n+4

    4 n ] ,

    4 T n =

    1

    2 [13+

    22

    4 ++

    9n+4

    4 n-1 ] ,

    两式相减得 3 T n =

    1

    2 [13+

    9

    4 +…+

    9

    4 n-1 -

    9n+4

    4 n ]=

    1

    2 [13+

    9

    4 -

    9

    4 n

    1-

    1

    4 -

    9n+4

    4 n ]=8-

    1

    2 2n-3 -

    9n

    2 2n+1 ,

    故 T n =

    8

    3 -

    1

    3• 2 2n-3 -

    3n

    2 2n+1 .