(1)由于 co s 2
nπ
3 -si n 2
nπ
3 =cos
2nπ
3 , a n = n 2 •cos
2nπ
3
故S 3k=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 3k-2+a 3k-1+a 3k)
= (-
1 2 + 2 2
2 + 3 2 )+(-
4 2 + 5 2
2 + 6 2 )+…+[-
(3k-2 ) 2 +(3k-1 ) 2
2 +(3k ) 2 ]
=
13
2 +
31
2 +…+
18k-5
2 =
k(4+9k)
2
S 3k-1 = S 3k - a 3k =
k(4-9k)
2 ,
S 3k-2 = S 3k-1 - a 3k-1 =
k(4-9k)
2 +
(3k-1) 2
2 =
1
2 -k=-
3k-2
3 -
1
6 ,
故 S n =
-
n
3 -
1
6 n=3k-2
(n+1)(1-3n)
6 n=3k-1
n(3n+4)
6 n=3k (k∈N *)
(2) b n =
S 3n
n• 4 n =
9n+4
2• 4 n ,
T n =
1
2 [
13
4 +
22
4 2 ++
9n+4
4 n ] ,
4 T n =
1
2 [13+
22
4 ++
9n+4
4 n-1 ] ,
两式相减得 3 T n =
1
2 [13+
9
4 +…+
9
4 n-1 -
9n+4
4 n ]=
1
2 [13+
9
4 -
9
4 n
1-
1
4 -
9n+4
4 n ]=8-
1
2 2n-3 -
9n
2 2n+1 ,
故 T n =
8
3 -
1
3• 2 2n-3 -
3n
2 2n+1 .