解题须知:
dy/dx = y'(t) / x'(t)
设:
z = dy/dx
z
= dy/dx
= y'(t) / x'(t)
= t Cos(t) / Cot(t)
= t Sin(t)
dz/dx
= z'(t) / x'(t)
= (t Cos(t) + Sin(t)) / Cot(t)
= Sin(t) (t + Tan(t))
所以 d^2y/dx^2 = Sin(t) (t + Tan(t))
解题须知:
dy/dx = y'(t) / x'(t)
设:
z = dy/dx
z
= dy/dx
= y'(t) / x'(t)
= t Cos(t) / Cot(t)
= t Sin(t)
dz/dx
= z'(t) / x'(t)
= (t Cos(t) + Sin(t)) / Cot(t)
= Sin(t) (t + Tan(t))
所以 d^2y/dx^2 = Sin(t) (t + Tan(t))