K=a/(b+C) =b/(a+c )=c/(a+b)
a=kb+kc
b=ka+kc=k^2b+k^2c+kc,b=(k^2c+kc)/(1-k^2)
c=ka+kb=k^2b+k^2c+kb=k^2c+(k^2+k)*(k^2c+kc)/(1-k^2)
1-k^2=k^2(1-k^2)+(k^2+k)^2
1-k^2=k^2-k^4+k^4+2k^3+k^2
2k^3+3k^2-1=0
(k+1)^2(2k-1)=0
k1=-1,k2=1/2
K=a/(b+C) =b/(a+c )=c/(a+b)
a=kb+kc
b=ka+kc=k^2b+k^2c+kc,b=(k^2c+kc)/(1-k^2)
c=ka+kb=k^2b+k^2c+kb=k^2c+(k^2+k)*(k^2c+kc)/(1-k^2)
1-k^2=k^2(1-k^2)+(k^2+k)^2
1-k^2=k^2-k^4+k^4+2k^3+k^2
2k^3+3k^2-1=0
(k+1)^2(2k-1)=0
k1=-1,k2=1/2