求不定积分∫∫dx/[x^2√(1+x^2)∫(x^3-6x+8)dx/(x-2)∫dx/√(x^2+6x-16)3Q

1个回答

  • 【1】∫dx/[x²√(1+x²)],令x=tanλ,dx=sec²λ

    =∫sec²λ/[tan²λ√(1+tan²λ)]dλ

    =∫sec²λ/(tan²λsecλ)dλ

    =∫cotλcscλdλ

    =-cscλ+C

    =-(1/x)[√(x²+1)]+C

    【2】∫(x³-6x+8)dx/(x-2)

    =∫[(x³-8+16)/(x-2)-6x/(x-2)]dx

    =∫[(x-2)(x²+2x+4)]dx/(x-2)+16∫dx/(x-2)-6[∫dx+2∫dx/(x-2)]

    =∫(x²+2x+4)dx+16∫dx/(x-2)-6∫dx-12∫dx/(x-2)

    =∫x²dx+2∫xdx-2∫dx+4∫dx/(x-2)

    =(1/3)x³+x²-2x+4ln|x-2|+C

    【3】∫dx/√(x²+6x-16)

    =∫dx/√(x²+6x+9-25)

    =∫dx/√[(x+3)²-25],令s=5secu,ds=5tanusecudu

    =∫5tanusecudu/√(25sec²u-25)

    =∫5tanusecudu/5tanu

    =∫secudu

    =ln|tanu+secu|+C

    =ln|√(s²-5²)/5+s/5|+C

    =ln|√[(x+3)²-25]/5+(x+3)/5|+C

    =ln|(1/5)[√(x²+6x-16)+x+3]|+C