由正弦定理a/sinA=b/sinB
(a^2+b^2)sin(A-B)=(a^2-b^2)sin(A+B)
等价于[(sinA)^2+(sinB)^2]sin(A-B)=[(sinA)^2-(sinB)^2]sin(A+B)
[(sinA)^2+(sinB)^2]/[(sinA)^2-(sinB)^2]=sin(A+B)/sin(A-B)
利用合分比性质
若a/b=c/d 则(a+b)/(a-b)=(c+d)/(c-d)
[2(sinA)^2]/[2(sinB)^2]=[sin(A+B)+sin(A-B)]/[sin(A+B)-sin(A-B)]
(sinA)^2/(sinB)^2=2sinAcosB/[-2sinBcosA]
sinA/sinB=-cosB/cosA
2sinAcosA=-2sinBcosB
sin2A+sin2B=0
[和差化积]
2sin(A+B)cos(A-B)=0
由0