设x1 x2∈(0,正无穷大)且x1<x2
∴f(x1)-f(x2)=x1-x2+k/x1-k/x2=x1-x2+(x2-x1)*k/(x1*x2)=(x1-x2)*(1-k/(x1*x2))
x1-x2<0,
当x1*x2<k时,令x1趋近x2,即x2<=根号k,1-k/(x1*x2)<0
f(x1)-f(x2)>0,
∴f(x)在(0,根号k)单调递减
当x1*x2>=k时,令x2趋近x1,即x1>=根号k,1-k/(x1*x2)>0
∴f(x)在(0,根号k)单调递增
设x1 x2∈(0,正无穷大)且x1<x2
∴f(x1)-f(x2)=x1-x2+k/x1-k/x2=x1-x2+(x2-x1)*k/(x1*x2)=(x1-x2)*(1-k/(x1*x2))
x1-x2<0,
当x1*x2<k时,令x1趋近x2,即x2<=根号k,1-k/(x1*x2)<0
f(x1)-f(x2)>0,
∴f(x)在(0,根号k)单调递减
当x1*x2>=k时,令x2趋近x1,即x1>=根号k,1-k/(x1*x2)>0
∴f(x)在(0,根号k)单调递增