一 1.原式 = lim(1/2)(n+1)(n+2)/n^2
= lim(1/2)(1+1/n)(1+2/n)/1 = 1/2.
2.原式 = lim[1-(1/2)^n]/(1-1/2) = 2.
3.原式 = lim[n+1-n]/[√(n+1)+√n] = 0.
4.原式 = lim(1+1/n)(2+3/n)(3+5/n)/5 = 6/5.
二 1.原式 = 1*2 = 2
一 1.原式 = lim(1/2)(n+1)(n+2)/n^2
= lim(1/2)(1+1/n)(1+2/n)/1 = 1/2.
2.原式 = lim[1-(1/2)^n]/(1-1/2) = 2.
3.原式 = lim[n+1-n]/[√(n+1)+√n] = 0.
4.原式 = lim(1+1/n)(2+3/n)(3+5/n)/5 = 6/5.
二 1.原式 = 1*2 = 2