由余弦定理得
AB^2=BD^2+AD^2-2AD*BD*cos135°
AC^2=CD^2+AD^2-2AD*CD*cos45°
即AB^2=DB^2+2+2BD(1)
AC^2=CD^2+2-2CD(2)
又∵BC=3BD
∴CD=2BD
∴由(2)得AC^2=4BD^2+2-4BD(3)
又∵AC=√2AB
∴由(3)得 2AB^2=4BD^2+2-4BD(4)
(4)-2*(1)得 BD^2-4BD-1=0
BD=2+√5
∴BC=6+3√5
由余弦定理得
AB^2=BD^2+AD^2-2AD*BD*cos135°
AC^2=CD^2+AD^2-2AD*CD*cos45°
即AB^2=DB^2+2+2BD(1)
AC^2=CD^2+2-2CD(2)
又∵BC=3BD
∴CD=2BD
∴由(2)得AC^2=4BD^2+2-4BD(3)
又∵AC=√2AB
∴由(3)得 2AB^2=4BD^2+2-4BD(4)
(4)-2*(1)得 BD^2-4BD-1=0
BD=2+√5
∴BC=6+3√5