⑴证明∶连接AC
∵菱形ABCD ∠ABC=60°
∴∠EBA=∠BCD=120°
∴∠BCF=60°
∵BA=BC ∠ABC=60°
∴∠BAC=∠BCA=60°AB=AC
∴∠BCA+∠BCF=120°
即∠ACF=∠EBA=120°
∵∠EAF=∠EAB+∠BAF=60°
∠BAC=∠FAC+∠BAF=60°
∴∠EAB=∠FAC
又AB=AC ∠EBA=∠FCA
∴△EBA≌△FCA (ASA)
∴∠E=∠F
⑵∵△EBA≌△FCA
∴EB=FC
∴CE-CF=CE-EB=a
⑴证明∶连接AC
∵菱形ABCD ∠ABC=60°
∴∠EBA=∠BCD=120°
∴∠BCF=60°
∵BA=BC ∠ABC=60°
∴∠BAC=∠BCA=60°AB=AC
∴∠BCA+∠BCF=120°
即∠ACF=∠EBA=120°
∵∠EAF=∠EAB+∠BAF=60°
∠BAC=∠FAC+∠BAF=60°
∴∠EAB=∠FAC
又AB=AC ∠EBA=∠FCA
∴△EBA≌△FCA (ASA)
∴∠E=∠F
⑵∵△EBA≌△FCA
∴EB=FC
∴CE-CF=CE-EB=a