利用换元法令x1=x-1,y1=y-1,z1=z-1,把积分区域变成对称的,利用对称性.
高等数学曲线积分计算曲线积分I=(x2+y2)ds其中区域为球面x2+y2+z2=2(x+y+z)答案是48π 求思路啊
1个回答
相关问题
-
数学曲线积分 求i=∫y²ds, 其中c是球面x²+y²+z²=r²与
-
曲线积分计算∮Γ(x^2+y^2+z^2)dL,其中Γ为曲线x^2+y^2+z^2=4,x+y+z=0的交线
-
求曲线积分∫(x^2)*zds,其中为球面x^2+y^2+z^2=a^2与平面x+y+z=0的交线
-
为什么曲面积分∫∫∑x^2dS=∫∫∑y^2dS=∫∫∑z^2)dS.∑为x^2+y^2+z^2=2(x+y+z)
-
曲面积分 (x^2+y^2)dS 积分区域是z=x^2+y^2以及平面z=1围成
-
设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=
-
求曲面积分xyzdxdy,其中积分区域为球面x^2+y^2+z^2=1的外侧.
-
设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x^2+y^2+z^2-2z)ds的值
-
关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥
-
高数题,曲线积分若曲线L为球面x2+y2+z2=a2被平面x+y+z=0所截得的圆周,则第一类曲线积分∫L(x2+y2+