f(x)=1+sin2x+sin²x-cos²x=sin2x-cos2x+1=(根号2)sin(2x-π/4)+1
f(θ)=(根号2)sin(2θ-π/4)+1=8/5
所以sin(2θ-π/4)=3/10 (根号2)
cos2(π/4-2θ)=1-2sin²(π/4-2θ)=1-2* 9/50=16/25
f(x)=1+sin2x+sin²x-cos²x=sin2x-cos2x+1=(根号2)sin(2x-π/4)+1
f(θ)=(根号2)sin(2θ-π/4)+1=8/5
所以sin(2θ-π/4)=3/10 (根号2)
cos2(π/4-2θ)=1-2sin²(π/4-2θ)=1-2* 9/50=16/25