(1)
连接AC角BD于O,设BM=x AC=a
AM=CM=√[a^2/4+(a/2-x)^2]
∴AM+BM+CM = √[a^2+(a-2x)^2]+ x = y
即:√[a^2+(a-2x)^2] = y - x
2a^2+4x^2-4ax = y^2+x^2-2xy
3x^2 -2(2a-y)x +2a^2-y^2 = 0
△=4(2a-y)^2-12(2a^2-y^2) = 0
4a^2-4ay+y^2=6a^2-3y^2
y^2-ay-a^2/2 = 0
y=(1+√3)a/2 或 y=(1-√3)a/2 (舍去)
即:当x=(2a-y)/3 = (3-√3)a/6 时,AM+BM+CM的值最小,为:(1+√3)a/2