如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得

1个回答

  • (1)

    连接AC角BD于O,设BM=x AC=a

    AM=CM=√[a^2/4+(a/2-x)^2]

    ∴AM+BM+CM = √[a^2+(a-2x)^2]+ x = y

    即:√[a^2+(a-2x)^2] = y - x

    2a^2+4x^2-4ax = y^2+x^2-2xy

    3x^2 -2(2a-y)x +2a^2-y^2 = 0

    △=4(2a-y)^2-12(2a^2-y^2) = 0

    4a^2-4ay+y^2=6a^2-3y^2

    y^2-ay-a^2/2 = 0

    y=(1+√3)a/2 或 y=(1-√3)a/2 (舍去)

    即:当x=(2a-y)/3 = (3-√3)a/6 时,AM+BM+CM的值最小,为:(1+√3)a/2