大哥,这个明显不是常系数啊
是欧拉方程吧
设x=e^t 则Lnx=t
xy'=dy/dt x^2y''=d^2y/dt^2-dy/dt
代入得
d^2y/dt^2+y=cost
这个才是常系数
先求d^2y/dt^2+y=0的通解 这个用特征方程也可以 设dy/dt=p 也可以解 都不困难
但是两种方法解出来的表达式有不同
特征方程解出来y=C1cost+C2sint
按后种方法解出来 y=C1sin(t+C2)
当然C1sin(t+C2)可以化为C1(sintcosC2+costsinC2),就和特征方程的解是一个样子了
然后求特解
y''+y=cost=(1/2)e^it+(1/2)e^(-it)
分别求y''+y=(1/2)e^it
和y''+y=(1/2)e(-it)
的特解
特解分别是 y=-(it/4)e^it
和y=(it/4)e^(-it)
所以
y''+y=cost得特解是(it/4)[e^(-it)-e^(-it)]=(1/2)t*sint
所以原方程得解为y=C1cost+C2sint+(1/2)tsint
把t=Lnx代入得
y=C1cosLnx+C2sinLnx+(1/2)LnxsinLnx
注:cost=(1/2)e^it+(1/2)e^(-it)
(it/4)[e^(-it)-e^(-it)]=(1/2)t*sint
均是用的欧拉公式(欧拉公式和欧拉方程是两码事)
这一题是欧拉方程用到欧拉公式完全是巧合